4 resultados para Aquatic ecology

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Burnett River snapping turtle (Elseya sp.) from the Burnett, Mary and Fitzroy river systems is an undescribed Australian freshwater turtle, of which very little ecological information is known. This paper describes the dietary ecology of the species in the Burnett River catchment. Stomach and faecal samples were collected from turtles and an index of relative importance was used to rank food items found in stomach samples. This index indicated that algae and aquatic ribbon weed (Vallisneria) were the dominant food items consumed. No difference in diet was found between males and females. Although the sample size was small, diet appeared to vary slightly seasonally, with Elseya sp. selectively feeding on the flower buds of the Chinese elm tree (Celtis chinensis) and the seeds of the blackbean tree (Castanospermum australe) when these food items were seasonally available. Faecal samples suggest that the most ingested foods ( algae and aquatic ribbon weed) were also the most digestible. Although predominantly herbivorous, Elseya sp. was seen to eat carrion once in the wild.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in heart rate (f(H)) and cloacal ventilation frequency (f(C)) were investigated in the Fitzroy turtle, Rheodytes leukops, under normoxic (17.85 kPa) and hypoxic (3.79 kPa) conditions at 25 degrees C. Given R. leukops' high reliance on aquatic respiration via the cloacal bursae, the objective Of this Study was to examine the effect of varying aquatic PO2 levels upon the expression of a bradycardia in a freely diving, bimodally respiring turtle. In normoxia, mean diving f(H) and f(C) for R. leukops remained constant with increasing submergence length, indicating that a bradycardia failed to develop during extended dives of up to 3 days. Alternatively, exposure to aquatic hypoxia resulted in the expression of a bradycardia as recorded by a decreasing mean diving f(H) with increasing dive duration. The observed bradycardia is attributed to a hypoxic-induced metabolic depression, possibly facilitated by a concurrent decrease in f(C). Results suggest that R. leukops alters its strategy from aquatic O-2 extraction via cloacal respiration in normoxia to O-2 conservation when exposed to aquatic hypoxia for the purpose of extending dive duration. Upon surfacing, a significant tachycardia was observed for R. leukops regardless of aquatic PO2, presumably functioning to rapidly equilibrate blood and tissue gas tensions with alveolar gas to reduce surfacing duration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cities have a major impact on Australian landscapes, especially in coastal regions, to the detriment of native biodiversity. Areas suitable for urban development often coincide with those areas that support high levels of species diversity and endemism. However, there is a paucity of reliable information available to guide urban conservation planning and management, especially regarding the trade-off between investing in protecting and restoring habitat at the landscape level, and investing in programmes to maintain the condition of remnant vegetation at the local (site) level. We review the literature on Australian urban ecology, focusing on urban terrestrial and aquatic vertebrate and invertebrate fauna. We identify four main factors limiting our knowledge of urban fauna: (i) a lack of studies focusing at multiple ecological levels; (ii) a lack of multispecies studies; (iii) an almost total absence of long-term (temporal) studies; and (iv) a need for stronger integration of research outcomes into urban conservation planning and management. We present a set of key principles for the development of a spatially explicit, long-term approach to urban fauna research. This requires an understanding of the importance of local-level habitat quality and condition relative to the composition, configuration and connectivity of habitats within the larger urban landscape. These principles will ultimately strengthen urban fauna management and conservation planning by enabling us to prioritize and allocate limited financial resources to maximize the conservation return.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbonate sediments are dynamic three-dimensional environments where the surface layers are constantly moving and mixing due to the energy of the water column. It is also an environment of dynamic biological, chemical and physical interaction and modification. The biological community can actively influence changes to sediment characteristics and associated biochemistry. Bioturbation resulting from macrofaunal activity disrupts sediment structure and biochemical arrangements and reduces the critical shear forces required to move sediment particles, adding to the dynamic and complex physical and biogeochemical nature of the sediment. Laboratory studies using both planner optodes and glass needle microsensors were used to measure abiotic sediment characteristics such as the depth distribution and concentrations of PAR. The biochemical nature of coral reef sediment were also investigated, specifically the quantification and the distribution of dissolved oxygen within coarse and fine-grained sediments under regimes of light and darkness. Results highlighted the significant contribution microalgal productivity and bioturbation has on distribution of dissolved oxygen in the upper sediment layers. On the reef flat a shallow water lander system was employed to measure concentrations of O2, pH, S, Ca and temperature over periods of 24 to 48 hours in coarse and fine-grained sediments. Similarities between laboratory and in situ results where evident, however the in situ environment was more dynamic and the distribution and concentrations of dissolved oxygen were more complex and correlated to irradiance, temperature and biological activity. Microsensor technology provides us with the opportunity to study, at very high resolutions, the upper irradiated; photosynthetically active regions of aquatic sediments along with anoxic processes deeper in sub-euphotic regions of the sediments.